Archive for the 'Environment' category

Know Your Biomes IX: Chaparral

Fynbos in the Western Cape, South Africa*

As much as any biome or global ecoregion is a challenge to group, differentiate or otherwise generalize, the chaparral or Mediterranean woodlands (scrubland/heathland/grassland) biome may be the best example such classification difficulties. There’s perhaps more general agreement regarding the features of this biome, even if the name tends to change from author to author. Many texts will not even include this biome in their list of major regions, instead making a small reference to it in the section regarding deserts. However, these areas, considering their combined territory, contain about 20 percent of the world’s species of plants, many of them endemic gems found nowhere else. On the flipside, due to the often environmentally heterogeneous nature of this biome, organisms that are prominent, integral members of other biome classifications are found in the chaparral as well. For the sake of consistency in this post, I’ll continue to refer to this biome as chaparral, as incomplete a descriptive designation as that may be.

Specifically, chaparral biomes exist in five major regions: South Africa, South/Southwest Australia, Southwestern California/Mexico, Central Chile and in patches wrapped around the Mediterranean Sea, including Southern Europe and Northern Africa. These regions are unified by their hot, dry summers and mild winters, referred to as an archetypal Mediterranean climate at 40 degrees north and south approximately.

The vast majority of rainfall usually comes with the cold fronts of winter. Annually, chaparral can experience anywhere from 250 mm of rain all the way up to 3000 mm in isolated subregions like the west portion of Fynbos in South Africa.

Plants in chaparral areas tend to be sclerophyllous (Greek: “hard-leaved”), meaning the leaves are evergreen, tough and waxy. This adaptation allows plants to conserve water in an area where rainfall is discontinuous, but probably evolved to compensate for the low levels of phosphorous in ancient weathered soils, particularly in Australia where there have been relatively few volcanic events to reestablish nutrients over millions of years. Obviously, these plants also happen to do very well during the xeric summers of the chaparral where drought is always a threat.

Because of the aridity and heat, the chaparral plant communities are adapted to and often strategically dependent on fire. Evolutionary succession scenarios constructed by scientists typically point to fire as one of the major factors that created much of chaparral areas in Australia and South Africa from Gondwanaland rainforest. (Fire ecology really deserves at least a post of its own, which I’d like to discuss given the time in the future.)

Some of the regions in the chaparral are exceptional. In South Africa, the area known as the Fynbos constitutes its own floristic region (phytochorion) among phytogeographers, the Cape Floristic Region. While it is the smallest of these floral kingdoms, it contains some 8500 species of vascular plants, 70 percent of which are endemic. The March rose (Oromthamnus zeyheri) is one of the standout specimens of the group as well as the national flower of South Africa, the King protea (Protea cynaroides). P. cynaroides is a “resprouter” in its fire-prone habitat, growing from embedded buds in a subterranean, burl-like structure. Another endemic species, the Cape sugarbird, is shown feeding on a King protea below**.

There is one unique threat to the chaparral: anthropogenic fire. In the past, if nature had not provided a fire to burn back the accumulated brush in these areas, often the native peoples would do so, and generally speaking, the fires seemed to be controlled and effective. But increased frequency of fires due to negligence or downed power lines can potentially cause catastrophic, unrecoverable fire. Only so much tolerance to such a destructive force can be built by evolutionary processes.

*Image by Chris Eason
**Image by Derek Keats

No responses yet

The new Encyclopedia of Life: Collections

Sep 05 2011 Published by under Animals, Endangered Species, Environment, Internet, Red Panda

I have to admit, I didn't use the Encyclopedia of Life very frequently in its first incarnation. I perused for media every now and then, or doubled checked the taxonomy for a species, but it was not a touchstone for research. The relaunch, however, gives users new functionality to make the experience more organized for personal and community use.

Like any good application, the startup/front page gives you just about everything you need. The mission statement is obvious, the search field is huge and the row of images tells you exactly what your searches will bring. The main site elements are listed below along with FAQ links, newsfeed tells you this is a busy place full of lots of other people. Facebook, Twitter, Tumblr, Flickr; Impression made. It's all familiar, accessible.

The main piece that I've grown to love is the collections. After you've created your account and start searching around for cute pictures of red pandas, you'll notice an Add to Collection button in the top right-hand corner of the page. Clicking the button displays a popup. Follow the prompts to create a new collection.

Collections allow you to create groups of organisms in EOL. Collections can be as subjective or scientific as you wish. Red panda could be included in a collection of the "Cutest Animals Ever" or a more natural category, maybe "Mammals of China." Once it's created, you can search for and add as many inhabitants of EOL as you wish by clicking the Add to Collection button and selecting one (or more) of your collections in the list. For the Cutest Animals Ever collection, you might want to add the echidna or the wolf spider. For the Mammals of China, you might want to add that other panda, whatever its name is.

I started a collection of monotypic taxa from the red panda, the sole species in the genus Ailurus. I searched for other monotypic taxa off the top of my head: the moose, the African civet cat, the Gingko. Then I started getting some responses from the community via the collection newsfeed. Katja said, "Don't forget the Aardvark!" Cyndy said the Western Osprey was a good candidate for the collection. Bob suggested that I add a description so that people visiting my collection knew exactly what "monotypic taxa" are. So I did:

This is how communities can grow out of collections of organisms, communities based on shared interests of one sort or another. In fact, there's functionality there to support those communities, just click the Create Community button next to your collection, add a description, invite some interested parties and start sharing.

EOL gets me thinking. It started with one of my favorite animals and quickly became a taxonomic scavenger hunt. I started researching: Just how many monotypic taxa are there? Why are they important? What does the classification say about these animals and their evolutionary history? As a writer, the answers become the building blocks for an essay. Usually there's nothing manipulable about those ideas; they spawn from reading papers, from the ideas of others. EOL provides a level of control that allows systems to be constructed that plead for further explanation.

Collection building can create new ideas, but it can also be useful for supplementing existing material. I've written about biomes and ecosystems frequently in the past, and it can be difficult to give readers a good idea of the extent or uniqueness of life in a particular region. I'm thinking about using collections in EOL when I can to create lists of organisms that constitute the ecosystem I describe so that readers can browse through the many unique organisms that live there. Excessive listing and description in prose structurally tedious; often its a choice between prose lists and long strings of bullets, which are ugly and usually scary for a casual reader.

EOL suddenly becomes a very interesting resource for science enthusiasts, educators and writers. I have some thoughts about how it could be used in more creative/artistic ways, but I'll hold off for a future post.

Go sign up and play around. It's Labor Day. The grill isn't ready just yet. EOL is a lot of fun.

3 responses so far

Nature and the illusion of peace

Jun 09 2011 Published by under Environment

In the clearing just below my grandfather's hunting cabin, between thick rows of red and blue spruce, you have to be careful with the lawn mower. Three perfect white sitting rocks are quickly overgrown with daisies and other weeds in the spring, so it's important to fish the stones from the tangle to avoid twisting a blade. I spent an evening there, about an hour, sitting, waiting for the sun to fully set, for the sky to blacken. Eventually I lost patience and went inside. The trees remained shadows against dark blue for much of the night.

Down there though, sitting on those rocks, it's quiet. The silence is deep, broken only by the furtive movements of rodents and birds in the woods and the rise and fall of the choral of tiny frogs by the pond. Occasionally the song halts while a larger animal passes - perhaps deer or raccoon - and then resumes. I get edgy thinking it might be a bear.

These are the moments we crave with nature. I sought out the exact place for my cathartic need for the quiet mountain that evening in the same way millions of people seek out specific places to connect with nature: state parks, hiking trails, cabin rentals, on and on. When my grandfather's place was inaccessible due to distance, I found other ways to connect. If I went too long without having that selfish bit of time, I felt pensive, frustrated. E.O. Wilson cites our evolutionary heritage. I tend to agree, but it runs deep in different ways. In my case, it's partially familial. Being in the woods anywhere reminds me of happy, uncomplicated times I spent with my family.

There's something untrue about it all, however. I sit in the night and listen, hearing little, breathing deep, but under my feet billions of organisms fight for territory and resources in the tiny cracks between soil granules. The soil itself is a conglomerate of varied origin, the decayed remains of animals and plants, fragments of ancient rock from continents long dead. The weeds we hacked down just days before have begun to vigorously regenerate, to vie for a better access to sunlight. Down the road, a snake invades the den of a family of chipmunks overnight, consumes the young. The guardians of the den are dead, flattened by passing cars on the asphalt. The babies would have died of starvation anyway.

You can almost see it, hear it when you want to, the cells of every living things around, the innumerable chemical processes firing off and all of this in context temporarily strips away that peace, leaves bare a reality, if not the reality of nature. The limitations of our own senses save us from prolonged exposure, but it invades nonetheless, if you let it.

There is something disrespectfully incomplete about popular conceptions of nature, especially when the escape into these places we love is for pure beauty, pure peace. There's something I dread about reentering that world, seeing the things none of us want to see, the brutality of it: death, chemical compulsions, the needs of predators. It's a reminder of how things really are and squashes that silly daydream of somehow returning to nature and finding our "proper" place among it once more. As a species, we ran away and didn't look back until about 100 years ago or so.

It's easy to wax poetic about the parsimony of nature, the circle of life, the harmless, birds-eye view of the majesty (and other such cliches), but it's difficult to actually witness the sad little realities that form the foundations of the big, happy system. The peace that I derive from nature is always denuded, raw, contextualized; I return to the city relieved but mindful. It's never a light escape. It never should be.

No responses yet

History of land use determines threat and rarity in mangrove tree species

Apr 12 2010 Published by under Conservation, Ecology, Environment, Research Blogging

This post was chosen as an Editor's Selection for ResearchBlogging.orgA new study from PLoS ONE was published last week assessing the threat to mangrove tree species around the world based on IUCN Red List data. At first glance the paper might seem to be just another bleak walk through the anthropogenic dismantling of a fragile biome, but there are some excellent issues presented regarding our relationship between the land and its inhabitants and the interconnectedness of rarity and threat level.

The major transition of land use to land management (with a cons bio or ecological base) is a shift in public perception driven by the shift in the perceived, publicized and tangible wants and needs of Western culture molded and implemented by government officials, politicians, philosophers and activists. When you juxtapose historical procedure and law regarding resource acquisition with our modern standards, the inescapable constant is Western prerogative, which definitely gives environmentalists a steep rhetorical hill to climb when trying to rationalize proposed protections, especially those that would effectively rope off or reign in particular resources from public access in foreign countries. One of the largest factors in the decline of mangroves worldwide is the proliferation of aquaculture, which is established by local (or not so local) business people to feed the Western-inspired globalized desire for seafood of particular types. It must be delightfully contradictory for locals to simultaneously receive pleas for the environment and orders for product from the same countries.

Portugal found value in the mangroves going as far back as the early 1700’s, when a law was established in Brazil making it illegal to fell a tree without also using the bark. This wasn’t an indicator of some kind of European protoenvironmentalism, however; it protected the tanneries’ interests in the trees, essentially granting exclusive rights to the tanneries for logging. Tannin was big business until more recently, evidenced by chemical evaluations like this:

That passage comes from the second volume on “the tannins”, preceded by historical data on the English interest in mangrove tannin in the early 19th century, so the commercial interest in these areas has been constant even if the primary interests have changed.

There are 70 species of tree that can be classified as “true” mangrove species, though not all of them are closely related. Mangrove trees have two main environmental stressors: an overabundance of salt from the water and a deficiency of oxygen from the soil. These plants have developed root structures like pneumatophores or above-ground, “aerial” roots to absorb oxygen , poking through the largely hypoxic mud. In some mangrove trees, the roots contain high levels of waxy suberin to mitigate the level of salt entering cells; in others, like the white or grey mangrove, the organism is able to secrete excess salts.

But perhaps the most unique adaptation to the high level of salts in the water and soil is the way some mangrove trees nurture and disperse their seeds. Unlike most plants, mangrove trees such as Aegialitis or Rhizophora are viviparous – the seeds germinate while still attached to the tree, forming a buoyant propagule, a protective vessel highly resistant to the desiccating waters encompassing the forest. Blair Niles, Mary Blair Beebe and William Beebe describe these structures in their 1910 book Our Search for Wilderness:

Far out on the tip of a lofty branch a mangrove seed will germinate before it falls assuming the appearance of a loaded club from eight to fifteen inches in length One day it lets go and drops like a plummet into the soft mud where it sticks upright Soon the tide rises and if there is too strong a current the young plant is swept away to perish far out at sea but if it can maintain its hold roots soon spring out and the ideal of the mangrove is realized the purpose for which all this interesting phenomena is intended the forest has gained a few yards and mud and leaves will soon choke out the intervening water.

This mangrove forest in eastern Venezuela, the Orinoco delta, is one of the areas of least concern for this biome. The forests are relatively protected in the area, and many of the species are replicated in other areas of the world, as far away as Africa. This is not the case, however, in other places of the world.

Mangrove Distribution

Just north, the mangrove forests along the Pacific and Atlantic narrows of Central America contain the highest proportional number of threatened mangrove tree species in the world, about 25 to 40 percent depending on the area, according to the authors of the new PLoSOne paper I mentioned, Polidoro et al. There are approximately 10 species of trees in the area, a stark contrast to the Indo Malay Philippine Archipelago, which harbors 36 – 46 species out of the 70 known of which less than 15 percent are threatened.

Percent of Mangroves threatened per area

That number can be deceiving however; the habitat has been reduced by 30 percent in the past 30 years due mainly to the establishment of fish and shrimp farms, and the protections on paper are not always translating into enforced policies. Two species in particular are of chief concern due to an 80 percent reduction in their already patchy habitats of late, Sonneratia griffithii and Bruguiera lainesii, of which there are only about 500 and 250 individuals left in the wild respectively.

The authors briefly mention an interesting statistic regarding rarity: Nine out of 11 of the most threatened mangrove trees are considered rare or uncommon, but five out of the rest are also considered uncommon, bringing up an important distinction. There is definitely a tendency for the two factors – rarity and threat level – to be tied for obvious reasons, but it’s not a necessary linkage. In the case of uncommon, least concern organisms, their rarity can be explained by physiological, reproduction or ecological factors like dispersal or certain competitive pressures that are normal for the organism. An uncommon organism might be rarer because of its distribution relative to other, comparable species or it might very well be under certain immediate threats, but is able to reproduce and disperse with greater efficiency than its peers.

This paper was also covered over at Conservation Bytes, where Corey details some of the essential services mangrove forests provide.

Polidoro, B., Carpenter, K., Collins, L., Duke, N., Ellison, A., Ellison, J., Farnsworth, E., Fernando, E., Kathiresan, K., Koedam, N., Livingstone, S., Miyagi, T., Moore, G., Ngoc Nam, V., Ong, J., Primavera, J., Salmo, S., Sanciangco, J., Sukardjo, S., Wang, Y., & Yong, J. (2010). The Loss of Species: Mangrove Extinction Risk and Geographic Areas of Global Concern PLoS ONE, 5 (4) DOI: 10.1371/journal.pone.0010095

No responses yet

Forest fragmentation and the isolation of the giant panda (a goodbye to Tai Shan and Mei Lan)

Feb 03 2010 Published by under Animals, Conservation, Ecology, Environment, Research Blogging


ResearchBlogging.orgTwo of the cities I’ve called home in the past 10 years – DC and Atlanta – are each sending a panda home to China tomorrow. Mei Lan and Tai Shan were both born in captivity and both a huge boon for conservation and science education on the east coast. I watched Tai Shan grow up along with other zoo goers in the DC area.

They’re returning to their ancestral home in China, where wild pandas are still endangered. Fossil records show us that giant pandas had a much wider range in Asia, inhabiting subtropical and warm temperate forests. Now, mostly because of human encroachment, they are restricted to 24 isolated populations in China’s fragmented mountain forests where bamboo dominates the understory.

In recent surveys, researchers have shown that the number of individual pandas has increased due to conservation efforts in the country, but the populations remain disparate. A recent study published in the Journal of Biogeography takes a look at how exactly these pandas are distributed in the forests of Southwest China, in relation to the level of fragmentation.

Forest fragmentation is a term we read a lot in newspapers and magazines listing the numerous causes of a population decline or a biological invasion, but it’s rarely fleshed out, so I’m going to take the opportunity to briefly describe its most important aspects.

You’re standing on a rock at the edge of a large stream or small river. A forest stretches from the banks of this stream to the faint peaks of mountains far in the distance. You turn around, looking across the stream to the other bank. There’s a stone like the one you’re standing on, and beyond that an identical forest running seamlessly from river to mountains in the other direction. Where the forest ends, at the bank, it changes from one ecosystem to another. In the river itself, another ecosystem, with microhabitats. On the other bank, a replica, then the forest again.

Now imagine you’re standing in a gravel patch on the side of a highway. There is a forest in front of you with no shrubby transitional area. On the other side, a replica: a gravel patch and a wall of trees extending to the mountains in the distance, or so you assume. You see the difference in the split. One is natural and supports a diversity of dovetailing ecosystems, the other is anthropogenic, effectively splitting one forest “patch” into two patches.

As these forest patches are further split, metapopulations form: smaller, per-patch assemblages of the populations found in the once contiguous forest patch. As land is developed, the patches shrink, becoming more and more isolated until migration and dispersal between them becomes strained due to a lack of food and shelter in the developed land. In the process of development, a higher ratio of forest edge to core is created, a drier, sunnier habitat that supports a different network of organisms. The extension of the forest patch edge also means more access for predators and parasites living outside.

Not surprisingly, the researchers found that dense forest (defined as forests with canopy cover > 30%) is “essential” for giant panda survival in the wild. The highest densities of pandas were found in the Qinling Mountains, which also happened to be an area with low relative fragmentation. Broken down, the most important factors for pandas turned out to be patch area, edge density (distance of edge per unit area) and patch “clumpiness” or how close patches are from one another.

Large mammals like the giant panda are particularly sensitive to fragmentation due to their need for space within a preferred habitat, the dense forest. It’s not just territorial; it has a lot to do with biodiversity. The size of these patches determines the diversity of the forest, which creates these smaller habitats like core or dense forest. In this current situation, where forest has been significantly reduced, pandas are forced to transverse long stretches of alien landscapes, which requires more energy despite the lack of food and exposes them to human influences.

Instead of establishing new reserves for other isolated populations, the authors recommend that future conservation efforts should be focused on creating corridors between the disparate patches. It’s great that the conservation efforts to bolster and protect populations are starting to work and the number of individuals is increasing, but the population needs to be considered as a whole. That means trying to reconnect forest patches and expanding the gene pool.

So as we say goodbye to Tai Shan and Mei Lan, it’s important to recognize just why they’re here in the first place. They’re ambassadors for conservation, for the reestablishment of their species in the wild, not in zoos.

The last time I saw Tai Shan, he was doing this:

It made me smile. The interest he generated, that oblivious little panda cub, just by doing what young mammals do – eating, sleeping, playing, sleeping some more – is remarkable. The crowds that lined up in front of that panda enclosure were enormous; so big, in fact, that they had to expand the area to compensate. Dads of every nationality held their squirming little ones on sweaty shoulders during the summer. In the fall, hundreds of school kids – in uniform and out – would pack in for the keeper’s lecture. And in the winter, after the New Year, Heather and I went to the zoo one weekday afternoon between semesters and had Tai Shan completely to ourselves for almost an hour. You can’t help but vicariously reach out to that little life, stumbling along with him as he paws and climbs and sniffs. It’s our proper place in stewardship. From a distance, we’re touched by the clear, oblivious innocence of nature.

Wang, T., Ye, X., Skidmore, A., & Toxopeus, A. (2010). Characterizing the spatial distribution of giant pandas (

) in fragmented forest landscapes
Journal of Biogeography DOI: 10.1111/j.1365-2699.2009.02259.x

No responses yet

Climate change, invasives and extinction in Thoreau's Woods

...I walk encouraged between the tufts of Purple Wood-Grass, over the sandy fields, and along the edge of the Shrub-Oaks, glad to recognize these simple contemporaries. With thoughts cutting a broad swathe I “get” them, with horse-raking thoughts I gather them into windrows. The fine-eared poet may hear the whetting of my scythe. These two were almost the first grasses that I learned to distinguish, for I had not known by how many friends I was surrounded — I had seen them simply as grasses standing. 

From "Autumnal Tints" by Henry David Thoreau The Atlantic Monthly October 1862. In this photo from 1908, the rocks mark the location of his cabin in relation to Walden Pond.

ResearchBlogging.orgAround 1851, after completing the retreat that inspired Walden, Thoreau had taken his interest in nature and made it a more scientific part of his work routine, walking the woods and fields around Concord, Massachusetts recording his observations of plants and animals through the seasons in the area. He paid particularly close attention to the flowering days of local plants, which has been of interest to the scientific community of late.

The data that Thoreau collected is meticulous enough to be considered a viable, useful data source by modern researchers. Thoreau's records of the area's wildlife have been carried on by others, providing us with over 150 years of data regarding the phenology of Northeast American flora; that is, life cycle events like fruiting or flowering days or migration and how these events are influenced by the seasons and the climate. Simply put, after 150 years of suffering the effects of disturbance and climate change, the natural communities of Concord are not quite the forests and fields of yore.

In the past two years or so there have been a handful of studies based on the data set that Thoreau started. In February 2008, Rushing and Primack published a study in Ecology discussing how global warming had affected flowering times in Concord. The average temperature has increased in the area by approximately 2.4° C since 1852, which has, on average, pushed flowering times up by 7 days since Thoreau's time. It was also observed that two non-native plants common in the Northeast, St. John’s wort (Hypericum perforatum) and highbush blueberry (Vaccinium corymbosum), could be useful as bioindicators of the future effects of climate change due to how quickly they responded to the changing temperatures; their mean first flowering days shifted forward approximately three days per 1° C increase in temperature.*

Later that year, Willis et al. published a study in PNAS using the data set started by Thoreau, this time looking at the data from a phylogenetic perspective. It was shown that flowering time was strongly correlated with abundance and that the species seemingly incapable of a relatively quick response to the change in climate were declining. The pattern is phylogenetically selective, strong evidence of climate change as an extinction risk.

In the near term, this pattern of phylogenetic selectivity is likely to have an accelerated impact on the loss of species diversity: groups of closely related species are being selectively trimmed from the Tree of Life, rather than individual species being randomly pruned from its tips.

A more recent study from Willis and his colleagues published in PLoSONE takes a look at how these flowering times differ between native and non-native species, determining how each has been able to respond over the past 150 years. It was previously demonstrated that the non-natives St. John's wort and highbush blueberry have been apt conformers to the changing climate, but neither are considered invasive.

The researchers placed the Concord flora in four comparative categories for analysis - Native vs. non-native, Native vs. non-native, non-invasive, Native vs. invasive, Non-native, non-invasive vs. invasive - and examined phenologically and ecologically important traits such as plant weight at maturity and flower diameter.

fetchObject-1.action

The results are remarkable, and reveal another layer of danger to native plants in the area. In general, non-natives were shown to adapt to changing temperatures better than the natives. Invasive species are particularly apt; they flower 11 days earlier than natives and 9 days earlier than the non-native, non-invasives. The results of the study also backed up earlier evidence that abundance was tied to earlier flowering days; invasives displayed greater relative abundance than the natives and non-native, non-invasives. But in general, non-natives in the area are equipped with certain traits that better prepare them for changes in climate.

Already the Concord area has lost about 27 percent of the species that once inhabited Thoreau's woods and another 36 percent have become incredibly rare. If the projections of 1.1° - 6.4° C increases in average temperature over the next century are correct, this trend will continue, progressively selecting traits that promote invasive growth and pushing natives that much closer to extinction.

*It's not always a boon for the flowering days of plants to be pushed forward in the season. If flowering too early, they may miss their pollinators or succumb to a late frost.

Willis, C., Ruhfel, B., Primack, R., Miller-Rushing, A., Losos, J., & Davis, C. (2010). Favorable Climate Change Response Explains Non-Native Species' Success in Thoreau's Woods PLoS ONE, 5 (1) DOI: 10.1371/journal.pone.0008878

Willis CG, Ruhfel B, Primack RB, Miller-Rushing AJ, & Davis CC (2008). Phylogenetic patterns of species loss in Thoreau's woods are driven by climate change. Proceedings of the National Academy of Sciences of the United States of America, 105 (44), 17029-33 PMID: 18955707

Miller-Rushing AJ, & Primack RB (2008). Global warming and flowering times in Thoreau's Concord: a community perspective. Ecology, 89 (2), 332-41 PMID: 18409423

No responses yet

>Climate change drying up streams, reducing the reproductive success of bats in the Rockies

Jan 28 2010 Published by under Animals, Conservation, Ecology, Environment, Research Blogging

>

Bats
From left to right: fringed myotis (Myotis thysanodes), the big brown bat (Eptesicus fuscus) and the long-eared myotis (Myotis evotis).

ResearchBlogging.orgWith the widespread effects of the changing climate on biological communities and landscapes across the world, it has become increasingly important for ecologists to identify indicator species among these ecosystems that can indirectly relate information about environmental changes that are not apparent or easily accessible. So it is in the west, the Rocky Mountains and in particular the Colorado River Basin, where temperatures have increased more than anywhere else in the contiguous United States, an average 1.2° C higher than the 20th century averages. The biggest increases in temperature happens at the highest elevations, which is

With warming temperatures comes less precipitation and less snowpack, which means during the summer months, the breeding season for most species, there is significant reductions of stream discharge, which has reduced the flow of the Colorado River. Thirty million people rely on the water provided by the Colorado River, and the Basin is foundational to all life in such a dry environment. Bats, as this article in Ecology explains, are particularly sensitive to these changes and, due to their enormous numbers, are integral to food webs as predator and prey. They may be that indicator ecologists are looking for.

Using capture and environmental data from over 12 years - 1996 to 2008 - Rick Adams from the University of Colorado has demonstrated dramatic correlations between the reduced availability of water and declines in the reproductive success of certain species of bats in the west. Bats are particularly sensitive to evaporative loss because of their small size, large surface area to volume ratio and uninsulated wings. Reproductive females are particularly sensitive considering that 76 percent of their milk is water. Lactating fringed myotis bats have been demonstrated to drink 13 times more often than non-reproductive females from nearby sources like streams or pools.

The study area was in the foothills of the Rockies, between 1650 m and 2250 m, a mix of montane meadows, shrubland, pine woods, riparian woodland and mixed coniferous forest, the habitats of nine species of bats; data was collected on the five most common: small-footed myotis (M. ciliolabrum), little brown myotis (Myotis lucifugus), big brown bat (Eptesicus fuscus), long-eared myotis (M. evotis), and fringed myotis (M. thysanodes). The 2,329 bats captured were put into one of four categories: Non-reproductive, Pregnant, Lactating or Post-lactating.

The reproductive output of these bats has declined, especially when stream discharge dipped below 7 cubic meters per second. During the hottest and driest years, 2007 and 2008, Adams captured more non-reproductive females. Among two species, M. thysanodes and M. lucifugus, the percentage of non-reproductive females was remarkably high, 56 percent and 64 percent respectively.

Both of these species use maternity sites having south or southeast aspects that promote highest solar gains throughout the diurnal roosting period (Adams and Thibault 2006; Adams and Hayes 2008), maintaining internal temperatures between 27° C and 36° C (Adams unpubl. data). Such microenvironmental conditions within roost sites promote high evaporative water loss and consequently a greater need for water intake, especially during the lactation period.

The other myotis species are more likely to roost in cooler, more humid microclimes, closer to the ground.

So if bats - mammals with high mobility* - are facing difficulties from a reduction of water availability, what about other animals more restricted to certain areas? How is this aspect of climate change affecting them? Bats, Adams says, are good bioindicators, organisms that can help scientists predict similar, indirect effects of climate change in other regional animal populations.

Current predictions from the IPCC tell us that this is just the beginning; it's "very likely" (90 percent confidence) that ecosystems will be significantly affected if the warming trend continues. In the next century, due to continued average temperature increases and an increase in the frequency of heat waves and drought, the Colorado River is facing a potential 8 - 11 percent reduction of flow. This will certainly exacerbate the bats' reproductive problems, but perhaps the continuance will afford ecologists the opportunity to transpose data to study similar problems among other animals and propose meaningful, sensible solutions - even if they are bandaids, like providing artificial water sources for vulnerable populations, temporary but viable, buying much needed time for more comprehensive applications.

*Bats are mobile, but they stick to their traditional maternity sites, still focused in a local area.

Adams, R. (2010). BAT REPRODUCTION DECLINES WHEN CONDITIONS MIMIC CLIMATE CHANGE PROJECTIONS FOR WESTERN NORTH AMERICA Ecology DOI: 10.1890/09-0091

2 responses so far

Coastal dune ecology: Invasive grass driving native herb to extinction through direct and apparent competition

Jan 22 2010 Published by under Ecology, Environment, Research Blogging

ResearchBlogging.orgI was reading through this study from Ecology yesterday, which tells the interesting story of how coastal dune ecology in northern California was invaded in the 19th century and subsequently disrupted. In order to stabilize the ever-shifting sand dunes, a grass called Ammophila arenaria, the European beachgrass, was planted along the coastline. A. arenaria grows from a strong, thick network of branching rhizomes, allowing it create a fast hold on loose soil and, as the coastal managers intended, create a framework that slowed erosion.

A. arenaria

Of course, what was preferable to coastal managers wasn't for the native wildlife. A. arenaria has spread all the way up to British Columbia since then, supplanting the native populations and potentially pushing one particular species of plant to extinction in the near future.

Lupinus tidestromii (link to the researchers' project homepage with some great photographs) was flowering on the dunes of northern California long before the European beachgrass arrived. The beachgrass is a direct competitor with L. tidestromii for the basics - sunlight, water and territory - but according to the authors, there are two other ways in which A. arenaria threatens L. tidestromii.

First, A. arenaria has limited L. tidestromii's seed scarification and germination. By anchoring the sand dunes, the invasive beachgrass has greatly reduced the chance for strong winds to remove the top layer of soil and vegetation from the dunes, which can expose and disperse dormant seeds. The researchers believe that L. tidestromii probably thrived when this mode of scarification was more prevalent since its seedlings are usually the first to establish after such "blowouts", but are quickly overtaken by A. arenaria.

Second, there is not only direct competition between the invasive and the native, but also a type of indirect competition called "apparent" competition that is playing a greater role in L. tidestromii's decline. In general, this type of competition revolves around two producers and a shared predator. One producer's population changes, which leads to a change of the predator population and finally, a change in the second producer's population (this is not exclusive to invasive populations, this mechanism applies to native communities as well). In this case, the invader A. arenaria is providing housing for L. tidestromii's main pre-dispersal seed predator, the deer mouse (Peromyscus maniculatus), which is bolstering their numbers and increasing pre-dispersal predation within 100 meters of these refuges. The beachgrass covers large areas of coastal land, giving these animals plenty of places to hide and plenty of opportunities to snatch up seeds en masse before they can be dispersed.

In order to restore L. tidestromii's dwindling population, the beachgrass needs to be removed, which will reduce the area of refuge for the deer mouse, reduce their populations and alleviate some of the pressures on the lupine's seed dispersal. The researchers have already projected an increase in one population of L. tidestromii, from only a marginal reduction in seed predation.

(I tried to keep in mind while reading that this is only two species evaluated regarding an introduced species that affects many other organisms in a wider ecosystem; that the effects are so pervasive in so small an interaction is remarkable.)

The authors believe that apparent competition may be responsible for homogenization and certain cases of selective extinction dependent on predator preference:

When invasive plants compete strongly with native plant communities via apparent competition, native species preferred by consumers are selectively eliminated from the community. As a result, invaded communities will ultimately contain a more homogenous composition plant species that are not preferred by consumers.There are many examples where changes in the abundance of an herbivore or introduction in an exotic herbivore changes plant community composition towards less preferred species. Throughout eastern North America, white-tailed deer have increased in density due to habitat fragmentation, supplemental food sources and the eradication of large carnivores; this in turn causes a reduction in the relative abundance of their preferred plant species (Augustine and McNaughton 1998). In addition, the introduction of exotic cattle to American landscapes similarly shifts plant communities toward those species that are not preferred (Fleischner 1994).

Two of the three populations of L. tidestromii that were analyzed are on a projected decline to extinction. Unless measures are taken to reduce the omnipresent influence of European beachgrass, this unique little lupine may disappear for good.

Dangremond, E., Pardini, E., & Knight, T. (2010). Apparent competition with an invasive plant hastens the extinction of an endangered lupine Ecology DOI: 10.1890/09-0418

No responses yet

Irreplaceable natural services: A look at the plight of the Chihuahuan grasslands and the black-tailed prairie dog

Jan 14 2010 Published by under Animal, Behavior, Ecology, Environment, Research Blogging

ResearchBlogging.orgI've written in general about grasslands before, as a biome, making sure to note that these treeless plains have always been the stage of expansive growth and decline for both the animal world and the human world, a stage upon which our skill at mastering our environment and bending it to our will is most apparent. Our achievement in converting grasslands from complex ecosystem to agricultural workhorses is only matched by our negligence in understanding how these delicate systems work and the potential danger of reaching a point of no return in grasslands management.

This article from PLoS ONE,  provides a very clear, apt example of just how delicate this biome can be, and illustrates the services that native animals can provide in an ecosystem that would cost considerable sums to replace. Grasslands are rapidly being converted to shrubland and in some cases, bare ground. Agriculture has disturbed a major architect of the grasslands of northwestern Mexico: the black-tailed prairie dog (Cynomys ludovicianus).

These photos show the rapid loss of prairie dogs within the largest colony of the Janos grasslands, following two decades of intensive land use and drought. Note the sparse coverage of annual grasses and forbs and the lack of perennial grasses, which is characteristic of degraded grasslands in Janos. These plants are only available during the rainy season and most of the year the area is bare ground. doi:10.1371/journal.pone.0008562.g002

The 55,000 hectare prairie dog complex (an assemblage of eight colonies) in the grasslands of Janos Valley in Chihuahua was fragmented and reduced by 73 percent from 1988 – 2005. The researchers saw prairie dog densities drop from 25 per ha to a dismal 2 per ha and the average colony size from approximately 6,250 ha to 437 ha (though a couple of larger colonies do still exist). Almost across the board, vertebrates in the grasslands would suffer similar declines in the same time period.

The black tailed prairie dog is a keystone species of the Janos grasslands. It performs a critical role in shaping and maintaining the ecosystem to which it belongs in three ways:

 

  • They are a vital source of food for predators like raptors, owls and coyotes.
  • The burrows they create are used as homes and habitats by other life.
  • They prevent the encroachment of shrubland by eating the seeds and saplings of woody plants like ephedra and mesquite.

The last benefit is perhaps the most significant, at least to shrinking grasslands. The researchers were given unique opportunities to study the extent of this ecological boon, two cases: one where they could see the aftereffects of the removal of a colony and one where they could observe the expansion of one.

In 1988, the Los Ratones colony was poisoned, a colony comprising almost 1,600 ha. In the absence of the prairie dogs, 34 percent of the surrounding grassland was converted to shrubland by 1996. Just to be clear, that is 34 percent is not a percentage of the land that the colony covered, but a percentage of the surrounding grassland, which actually comprised more hectares than the Los Ratones colony itself. Why is that important to mention? The second case neatly dovetails.

The researchers watched the La Bascula colony expand 16 percent into the surrounding ephedra-dominated shrubland over a five year period, between 2000 and 2005. In the area around the colony, 81 percent of the ephedra had signs of 'prairie dog clipping' and, on average, the plants around the colony were 55 percent shorter than the plants on the colony outskirts, of which only 3 percent showed the hallmark of pruning. The prairie dogs had effectively cut a swath of 546 meters into the ephedra, converting a large area into grassland and maintaining it with their mere presence.

So when colonies of black-tailed prairie dogs are fragmented and reduced in size and number, the grassland is missing its most diligent protector, allowing the shrubland to expand. Some species have seemed to move and adapt to the shrubland when the ungrazed grassland habitat became more scarce:

 

...the bunchgrass lizard (Sceloporus scalaris), a species highly associated with perennial grassland habitat, ...was more abundant in the shrublands in our study. This species may have preferred the more structurally complex shrublands compared to the heavily grazed grasslands, as it has been found to be ten-times more abundant in ungrazed perennial grassland than grazed grassland. 

It's not the standard, however. The endangered and threatened species that thrive in the grassland - particularly the carnivores and larger mammals - have seen startling declines.

Mammal and bird species in the Janos prairie dog grasslands showing dramatic declines in densities over time. (Note prairie dog densities are compared from 1994–2004.) Of the 33 bird species that were sampled, only those that exhibited a 2-fold or greater change over time are shown here. doi:10.1371/journal.pone.0008562.g009

I think it's important to mention that this article is not saying 'grassland good, shrubland bad'; it's highlighting how important one species can be to a delicate and anthropogenically overused ecosystem. In fact, the researchers make clear in the article that in general, species richness and diversity was actually higher in the shrublands. But the most threatened species depend on the grassland for their livelihood, which is why it's so important to try to preserve and manage it properly.

It's encouraging to see results. Often the rhetoric from NGOs and activists regarding the morality and practicality of protecting threatened areas starts to blend and lose impact, so it's vital to publicize studies that bring to light exactly the sort of "kick em in the wallet" attention grabbers that legislators need to see.

The researchers are working with ranchers in the area, trying to come up with management solutions instead of just kicking down the door and saying 'no', so to speak. They hope to use the cattle to clear spaces for the prairie dogs to recolonize, reduce the grazing pressure so that the fires can return, which in turn will clear more shrubland, making way for further colonization.

It's realistic, practical solutions like these that will not only protect the ecosystems that are in danger, but also forge new relationships with people a world away from the West. Can we really blame these people for being suspicious of our intentions, for assuming that this is just another mode of control or that we are disregarding their culture yet again, a culture certainly more intact and probably less confused than ours currently?

Ceballos, G., Davidson, A., List, R., Pacheco, J., Manzano-Fischer, P., Santos-Barrera, G., & Cruzado, J. (2010). Rapid Decline of a Grassland System and Its Ecological and Conservation Implications PLoS ONE, 5 (1) DOI: 10.1371/journal.pone.0008562

No responses yet

Know Your Biomes VIII: Boreal Forest

Sep 24 2007 Published by under Basic Concepts, Ecology, Environment, Evolution

Larix_gmelinii0.jpg

A stand of Dahurian Larch beginning to change color in Northeast Siberia.

Between 50 and 65 degrees N latitude lies a globe encircling band of forest dominated by conifers and chilly winds called the boreal forest (boreal is from the Greek word for north) or the taiga (Russian for "marshy pine forest"). From Iceland's wiry birch forests to the larch covered northern areas of Siberia, the boreal forest grows in a climate where extremes are commonplace, and where much of the wilderness remains preserved.

The boreal forest is generally a cold place; it is winter in these areas for over half the year, and most of the precipitation is locked up in snow and ice, about 20 to 60 cm per year. However, in places like Central Siberia for example, the range of temperatures throughout the year can be over 100 degrees C, reaching 30 degrees C in the summer and dropping to a breath taking -70 degrees C in the winter.

Naturally, the plants and animals are well adapted to the climate. Most of the boreal forest is dominated by evergreen conifers - spruce, fir, pine, etc. - but hardy deciduous trees crop up here and there as well, like birch and aspen. Willows grow near the clear, mountain lakes of the northern forest. The needles of the larch, a deciduous conifer, turn bright yellow in autumn before falling in and around the sparse underbrush, in some areas composed of rose, juniper and blueberry, which provide food for small animals like the red squirrel and the porcupine, as well as nesting crossbills and spruce grouse. Moose and bison are wary of the elusive wolf. Lynx and coyote scour the forest floor for a giveaway twitch from the snowshoe hare. Another of the smaller predators, the tenacious wolverine, has been observed in fierce disputes over prey with the huge brown bears of the North.

Such a high concentration of conifers leads to acidic soils in most areas of the boreal forests. The cold and low pH limits the decay of organic material, so unlike most biomes, the most fertile soil horizon is the leaf litter, where mycorrhizal fungi (fungi that lives within the roots of plants, sharing nutrients fixed from the soil) break down dead plant and animal material. Naturally, the roots that tap into this store of nutrients are shallow ones. In the coldest of climes, permafrost turns the subsoil into a near impenetrable mass.

The boreal forest has been the focus of much ecological research due to the general lack of human influence in the past.* Perhaps one of the best studied cases of predator-prey dynamics was done on two inhabitants of the boreal forest, the lynx and the snowshoe hare, which is famously the food of choice for a hungry lynx. Ecologists were able to take 200 years of pelt purchasing records from the Hudson Bay Company and reconstruct the relative abundances of the hare and the lynx. When graphed and superimposed, they found that population spikes in the hare population were followed by lagging spikes in the lynx population. Additionally, plummeting numbers of hare were followed by a proportional decrease in the lynxes.

A long chain of studies have been done since, which has given us a window in to how predation and food abundance affects animal and plant populations. In a nutshell, as more food (underbrush like rose and willow) became available to the hares, they increased in population up to a certain maximum feeding level. At this level, the population is no longer sustainable. An increased population of hares means more food for the lynxes, which undergo a similar transformation, explaining the lagging population spikes followed by proportional drops in population. (Eventually I will find the time to talk about functional and numerical responses in predator-prey/food availability situations - this post could go on forever just about that.)

Next in the biomes series: Tundra.

*The major threats to these forests in recent times is logging, the power industry and a lack of strong legislation preventing abuse.

No responses yet

Older posts »